Tracking and Vertexing at CMS

Steve Wagner

University of Colorado, Boulder Hadron Collider Physics Symposium 2006

26 May 2006

Additional information in:

6 - CMS detector status and commissioning

45 - Electron and Photon ID at ATLAS and CMS

46 - Muon ID at ATLAS and CMS

47 - Tau ID at ATLAS and CMS

The CMS Detector

- Inner tracking detectors small, colorful region of drawing below
- Shares 4 Telsa solenoid field (2.7 GJ!) with electromagnetic and hadronic calorimeters -> outer tracking layer at r ~ 110 cm
- 1.9 mm sagitta for $p_T = 100 \text{ GeV/c}$ tracks (190 μ for 1 TeV/c)

The CMS Tracking Detectors

- At design L (10^{34} cm⁻²s⁻¹) have 20 min-bias events/(25 ns bunch x-ing)
- $N/(25 \text{ ns} \times \text{cm}^2) \sim 5 \text{ at } r = 4.4 \text{ cm (need pixels)}, \sim 0.1 \text{ at } r = 25 \text{ cm (strips OK)}.$ Need fast response time
- Extreme radiation environment -> design for bulk type inversion and keep cold. Pixel and strip assemblies all have C_6F_{14} cooling loops

The CMS Si Strip Trackers

- Red are single-sided (axial, radial) sensor modules
- Blue are double-sided (glued single-sided with small stereo angle)
- \bullet 440 m² of Si wafer, 210 m² covered with sensor, 10M channels. All ~16000 modules finished May 2006

Strip Tracker Layout

- Keep it reliable single-sided, AC coupled, polysilicon biased
- Thin (320 μ m) sensors for r < 60 cm, thick (500 μ m) sensors for r > 60 cm
- <100> crystal less sensitive to radiation damage than <111>
- Keep width/pitch low (~0.25),
 ~constant for low capacitance,
 independent of pitch and thickness
- After irradiation, expect S/N ~ 13 for thin, ~15 for thick sensors

Barrel Strip Trackers (TIB, TOB)

Silicon sensors

- Strips read out by APV ASIC (75376 total) connected thru a glass pitch adapter
- APV has peak (one sample) and 3 sample (for beam x-ing info) modes
- TIB modules, TOB RODs held in place by CF support structures
- Photo left is an early production ROD of double-sided modules in fixture

Disk Strip Trackers (TID, TEC)

- Sensors, modules taper as they go out in r. Strips are either radial or small angle to radial
- TEC modules are arranged in petals, 16 of which make up a disk
- The tracker passed an important milestone in March 2006 when the first cosmic muon track was observed in the TEC+
- A total of 400 silicon strip modules
 were read out with a channel
 inefficiency of below 1% and a common
 mode noise of only 25% of the intrinsic
 noise.

Strip-only Tracking

- For LHC 2007 commissioning run, Si strip trackers will be the only complete tracking system (very limited pixel arrays for commissioning only)
- But strips have ≥7 hit coverage to η ~ 2.4
- Pixel-less tracking algorithms are currently being developed and adapted from existing ones
- 190 GeV H -> ZZ (Z ->µµ) signal is ~50% wider without pixels than with (this can be reduced with a vertex constraint)

black is total of expected hits vs η , red is thin double-sided hits, blue is thick double-sided, green is sum of double-sided hits

The CMS Pixel Detectors

- 3 barrel layers at r ~ 4.4, 7.3, and 10.2 cm. Length of 53 cm
- Endcap disks at +-34.5 cm, +-46.5 cm
- Pixel size of ~100 μ m x 150 μ m. 48M pixels in barrel, 18M pixels in endcaps
- 3 high resolution space-points for $\eta<2.2$, 2 for $\eta<2.8$ r- ϕ resolution of \sim 10 μ m (Lorentz angle of 23° for barrel pixels) r-z resolution of \sim 17 μ m

Barrel Pixels

- Si sensors are 1.6 cm x 6.6 cm, 300 µm thick
- 2x8 array of readout chips, Indium bump-bonded to sensors, form modules.
- Sensors have analog readout analog-coded row/column, pixel pulse height. Shaping time ~ 25 ns (1 bunch x-ing)
- 8 modules per ladder; 800 modules in barrel detector
- 2 data links/module in layers 1 and 2, 1 data link/module in layer 3
- Carbon Fiber support structure with cooling channels

Forward Pixels

- Blades rotated by 20° for charge sharing (Lorentz angle, track inclination)
- 7 detector modules per blade (4 on front, 3 on back of blade)
- 45 readout chips per blade
- Room for another disk at z = 58.5 cm (2.0< η <3.0) if needed
- Both Barrel and Forward Pixel full detector assemblies expected to be installed for 2008 LHC Physics Run

Reconstruction Considerations

- Detector has lots of granularity to deal with occupancy from tracks "not of physics interest" (min-bias pile-up, loopers, out-oftime, back-splash)
- Also has lots of material (µ[±] scatter, e[±] scatter and bremsstrahlung, h[±] scatter and interact!). Kalman Filter final track fit accounts for scattering and dE/dx
- Interaction lengths have similar distribution as radiation lengths (right). Peak of λ/λ_0 ~0.45 at η ~1.6
- In many ways more difficult to deal with radically alters/kills tracks (many hadrons don't get to outer layer of strip tracker)

Track Reconstruction Software

- Primary Pattern Recognition the Combinatorial Track Finder (CTF)
- Seeded from hit pairs in 2 pixel detector layers within acceptable windows.
 Even though most hits, pixels have lowest occupancy and tracks haven't interacted/decayed yet
- Can tighten seeding by using primary vertex
- Trajectory building -> propagate seed to new (compatible) layer, update parameters and errors (Kalman) with all compatible hits (new trajectories)
 - also make new trajectory with "null" hit in case of inefficiency
- Propagate these trajectory candidates to next layer in parallel (avoid bias)
- Trajectories killed if χ^2 too big or too many missing hits
- Final trajectories are Kalman fits of tracks smooth with parameters of trajectory propagated backwards

Track Efficiency and Fake Rate

- CTF has been CMS standard tracking code for >5 years now; constantly being improved and extended
- Most of its time is spent in trajectory building
- Global efficiency ≥99% for high p_T µ with η < 2.0
- Below left is global and algorithmic (fraction of tracks algorithm should find) efficiency for a hard case tracks in high p_{T} (120-170 GeV) b jets with low luminosity pile-up added
- Right is fake rate for tracks in these jets

Track Parameter Resolutions

- The combined trackers provide ~ 2% or better p_T resolution for p_T = 100 GeV/c tracks out to η ~1.25 (better for lower p_T)
- For $p_T = 10 \text{ GeV/c tracks}$:
 - $\sigma(d_0)$ < 25 µm out to η = 1.5; ~ 30 µm at η = 2.4
 - $\sigma(z_0)$ < 60 µm out to $\eta = 1.5$; ~ 150 µm at $\eta = 2.4$

Alignment Requirements

- Wafer positions carefully measured at all stages of assembly. Below left are x (µm) of sensors in TOB modules σ < 10 µm
- This level of misalignment wouldn't even be seen in p_T resolution if left uncorrected (below right), but 2 or 3 times this would
- Sensor global placement to $\sim 100~\mu m$ at the beginning will need track-based alignment to get it down to $\sim 10~\mu m$

 There is a laser system (LAS) for hardware alignment of the strip detectors - will monitor long-term shifts of large structures after the

detector is assembled

Alignment Algorithms

- CTF shown to work well with misalignments up to 1 mm at low luminosity ->
 this is the starting point for track-based alignment of lots of modules
 (~20k including pixels)
- Several different track-based alignment algorithms currently being developed:
 - HIP: Hits and Impact Points collected for each alignable sensor. Analytic functions describe residuals for up to 6 alignment parameters/module (χ^2 min of 6N parameters). Inverts block diagonal matrix
 - Millepede: Fits to 6N + track parameters simultaneously. Inverts very large matrices. New version $\sim \times 1000$ faster than previous, adapted to run on O(10k) rank matrices
 - Kalman Filter: update alignment params after every track; correlations without inversion of large matrices
 - Simulated Annealing

Alignment Tests with Cosmic Rack

- The CRack is a test-stand for RODs which mimics a wedge of the TOB (Sept 2004 test-beam run) or more (see below left) also a cosmic telescope
- CRack tracks (reco-ed using a modified CTF and identical software alignment elements) provide some tests of alignment algorithms
- Easily aligned manually. HIP, aligning in x only, produces better results and converges quickly (x and yaw only marginally better)
- Millepede applied to same data produces consistent results

Fast Track Reconstruction

- Can use CTF seed finding, trajectory building, and fitting code in High-Level Trigger (HLT)
- Full tracking too slow but can stop as soon as parameters get good enough for trigger purposes (truncate trajectory building, where most tracking time spent). ~5-6 hits usually enough

Tracking results with all possible hits included

Impact Parameter b Tagging

- If combined with regional tracking (looking for tracks only in a region defined by trigger lepton or jet) can consider doing b-tagging in HLT with fast partial tracking
- Performance with partial tracking run out to 7 hits (open symbols) not much worse than that for full offline tracking (solid symbols) for simple impact parameter b-tag
- This will really rely on having the alignment under control

b-tag eff vs mistag rate for u-jets for regional, partial (7 hit) tracking. Tag: 2 trks with IP/σ > cut

Heavy Ion Tracking Performance

- In central PbPb Events we expect very high track densities:
 - $dN/dy_{PbPb} \sim 3500 (dN/dy_{pp} \sim 7)$
 - HI tracking must be robust at high occupancy (~1% in pixels, up to 50% in strips)
- Specialized HI tracking algorithm:
 - Seed tracks with pixel triplets (low occupancy, good initial estimate of track parameters
 - Use Kalman Filter to propagate tracks into strips. Special error assignment for merged hits
 - Select only one track per seed by best X²
 - Perform final fit with stereo layers "split"
 - To reject fakes, require > 12 hits (out of 17), $P(X^2) > 0.01$, $d_0/\sigma > 3$
- Excellent performance even at highest track densities

Gaussian Sum Filter

- In Kalman Filter (KF) multiple scattering and Energy loss variance are (well) treated as Gaussian "process noise"
- Some processes, like bremsstrahlung, are inherently non-Gaussian (Bethe-Heitler) but can be approximated as a sum-of-Gaussians
- Introduce new components (multiplication of # of states). After each update recalculate weights (non-linear). Retain only high probability components (in plot limited to 12)
- Increases fit time by (unoptimized) factor of ~200. Use only on e[±] candidates of interest. But also significantly improves parameters, pulls

Deterministic Annealing Filter

- Assignment of wrong hit in pattern recognition causes tails in parameter distributions; right hit is often close-by
- DAF (equivalent to "Elastic Arms") allows multiple hits/layer to be assigned to a track. Competing hits assigned (normalized) probabilities based on residual to track
- KF fitter/smoother run to convergence; recalculate probabilities (nonlinear)
- Also "anneal" fit while converging (V-> α V, α =81->1) to keep out of local minima. Below is transverse impact param (d₀) for p_T > 15 GeV tracks in high E_T b jets. Also flattens P(X²) distributions

Vertex Fitting Algorithms

- Several different vertex fitting algorithms being investigated:
 - Kalman Vertex Fitter The standard. Linear. Refit of track with vertex constraint. But sensitive to tails on track param resolutions and tracks not from vertex
 - Trimmed Kalman Fitter discards tracks with < 5% (typical) probability of coming from vertex
 - Adaptive Vertex Fitter iterative KF where tracks are weighted by $w(d/\sigma,T)$. T changes with iteration (anneals)
 - Gaussian Sum Vertex Fit add mixture of Gaussians to track error distributions (for tails)

z(fit)-z(true) Bs->ψφ vertex fit

Primary Vertex Finding

- Primary vertexing moves from off-line into HLT so information available there and for seeding full tracking
- A tighter variant of fast tracking uses triplets of hits in the pixel detectors only
- \bullet After cuts on p_T and impact parameter, vertices are formed using a histogramming method (z impact parameter) or a variant of Trimmed KF
- Trimmed KF shows slightly better results. Efficiencies ~80-100% for various physics processes (low multiplicity like H -> YY harder)
- \bullet Typical z_{PV} resolutions at low luminosity shown below. Results consistent with PV reconstruction with full tracking

Jet Vertex b Tagging

- Two vertex algorithms have been studied for finding secondary vertices (b, c decays) - the Trimmed Kalman Vertex Fitter (TKF) and a Tertiary Vertex Finder (TVF)
 - TVF based on Kalman but uses tracks from tertiary (b->c) that might otherwise be trimmed away from secondary vertex
 - Also some tertiary tracks assigned to secondary vertex (and bias reconstructed vertex forward) now have another place to go
- With typical secondary vtx cuts (L/ σ > 3, away from PV and beampipe, mass cuts), have ~63% eff for 90% purity with TKF (resolutions at right) for 20-70 GeV p_T b-jets in barrel, slightly higher with TVF

Also investigated effect of short-term misalignment (dashes)

Conclusions

- The strip tracker is entering final assembly stage. The pixel detectors appear on-schedule for 2008 LHC Physics run
- Various early tracker subsystems beginning to take cosmics. The Magnet Test/Cosmic Challenge should start seeing cosmics in (very limited) tracker with full field soon
- The main tracker pattern recognition (CTF) and Kalman final fit are quite robust and adaptable:
 - It can be used with less than the full detector for speed (for the HLT) and produces quality results
 - With modifications it can handle the dN/dy ~ 3500 of HI interactions
 - It can be adapted to deal with complex, non-Gaussian processes and resolution tails in track fitting and vertexing
- The tracking and vertexing code is being ported to a new, more modular event data structure (CMSSW). The basic functionality is there now, ready for validation. Now need to port higher-level code (like GSF - easier) and resume developing
- The CMS tracking system is beginning to come together in a hurry!